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Abstract 
Small datasets and imbalanced classes often cause problems when it used as primary research material. In 

case of classification and object detection, some researchers proposed Transfer Learning (TF) with several 

frozen layers. Moreover, YOLO (You Only Look Once) is one of the algorithms that works in real-time object 

detection. In this research, we focused on evaluating the YOLOv5s version of detecting vehicles in small and 

imbalanced datasets. The original YOLOv5s were trained and compared with YOLOv5s with freezing layers 

method (10 and 24 frozen layers). The experimental results of original YOLOv5s were precision score of 0.779, 

recall value of 0.933, mAP@0.5 of 0.93 and mAP@0.5:0.95 of 0.684 while YOLOv5s with 10 frozen layers 

where precision score was decreased to 0.639, but the other value increase with recall value of 0.939, 

mAP@0.5 of 0.951 and mAP@0.5:0.95 of 0.732.  Overall, the version with 10 frozen layers demonstrated 

superior performance in addressing the challenges of small and imbalanced datasets, particularly excelling in 

recall and mAP metrics. 
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1. Introduction 

Dealing with small and imbalance datasets often give a problem with researcher who 

conduct research in certain area where the data is limited and want to avoiding building 

models from scratch [1]. However, it is difficult to obtain large-scale labeled data in most 

practical applications [2] where small dataset refers to the lack amount of data, 

meanwhile imbalance dataset refers to the gap amount of data in each class. Even tough, 

gaining thousand or million data is more recommended but the development of 

technology allows us to do a different approach like applying transfer learning.  

 

Deep learning models with transfer learning have been applied in various fields, such 

as computer vision and natural language processing [1]. This promising technique allows 

us to reuse the pretrained model from large dataset that have broad knowledge in many 

classes or objects. The reasons why this transfer learning works because the existed 

knowledge from the network has some intersected class with the new dataset [3]. The 

fundamental concept is to apply knowledge gained from previous tasks, including data 

features and model parameters, to support the learning process of a new task. In 

particular, in image recognition and classification tasks, transfer learning has shown 

significant benefits, and is getting plenty of attention in the research community [4]. 

 

mailto:mhd.yusuf@mercubuana.ac.id
mailto:41520010158@student.mercubuana.ac.id
https://creativecommons.org/licenses/by-nc-sa/4.0/


 

 However, we can implement transfer learning on a convolutional neural network using 

two approaches. First, we freeze the convolutional layers and use the pre-trained model 

as a feature extractor. The second approach is fine-tuning, whereby we freeze the initial 

layers and unfreeze deeper convolutional layers. The unfrozen convolutional layers are 

trained to update the weights. If we have limited new data, we can apply the first 

approach to prevent overfitting. On the other hand, we can use the second approach with 

larger datasets to train the deeper layers to detect task-specific features [5]. As the 

datasets condition, we will implement the first approach. 

 

Furthermore, YOLO algorithms have been widely used in real-time target detection due 

to their obvious advantages in accuracy and speed [6]. It is an object detector that 

detects objects in images and localizes them directly into bounding box coordinates and 

class probabilities [2]. Because of its dependability, validity, speed of detection, and 

rapidity, it also guarantees real-time identification [4]. Moreover, from YOLOv1 – v7 

version, we decided to use the YOLOv5s version since it has a minimal network size and 

more convenient for achieving high-efficiency object detection [6]. We will apply the 

transfer learning technique using a pre-trained YOLOv5s model on the Common Objects 

in Context (COCO) dataset to recognize vehicles datasets that include three classes 

(motorcycle, truck and car) and compare it with the original model.  

 

 

2. Related Works 

Object detection has become essential tool for a huge variety of utilization [8]. Since 

the development of computer hardware and algorithms, now researcher can perform 

studies about deep learning and neural network that require high computer specification. 

Even tough, the development of algorithm that can compute accurate result in a short 

time is still needed. Furthermore, to achieve a good detection model, a novel preliminary 

of neural network algorithm was invented. Recently, the most common deep learning-

based object recognition models are R-CNN (Region-based Convolutional Neural 

Network), Fast R-CNN, Faster R-CNN, Mask R-CNN, and You Only Look Once (YOLO) 

models [2]. The R-CNN family constitutes two-stage object detectors, wherein regions of 

interest (ROIs) are first extracted, followed by feature extraction and object classification 

within those ROIs. Consequently, two-stage object detectors generally incur longer 

detection times compared to one-stage detectors. In contrast, YOLO models belong to 

the one-stage detector category, directly classifying and regressing candidate boundary 

boxes without the intermediate step of extracting ROIs, moreover the YOLOv5 version 

have been trained on the COCO dataset, which contains 80 classes and more than 

200,000 labeled images. 

 

Furthermore, the object detection using YOLO was researched by Manikandan et al. 

where they train COCO dataset using YOLOv5 algorithm to detect several object 

including people, vehicles, and animals in various environments. The outcome shows that 

YOLOv5 achieves good modern performance for a variety of sensing applications, 

including surveillance, robotics, and autonomous driving [8]. Compared with the other 

version, YOLOv5 despite being produced by a different author than its predecessors, has 

higher performance in terms of accuracy and speed among the YOLO family [9]. In other 

hand, Arifando et al. proposed The Improved-YOLOv5 model that integrates the 



 

GhostConv and C3Ghost Modules into the YOLOv5 network, implements a slim scale 

detection model, and replaces the SPPF in the backbone with SimSPPF for increased 

computational efficiency and accurate object detection capabilities. Compare with the 

other model, The Improved-YOLOv5 model have the best performance in terms of the 

accuracy and inference time. Because of its smaller size, lower memory usage, and 

faster inference time capabilities, the proposed model was more efficient [10]. 

 

Research conducted by Liau et al where they comparing the each YOLOv5 version 

with and without frozen layers on detecting status recognition system where the 

YOLOv5s get average inference time (in seconds) 0.0148 (0 frozen layer) and 0.0162 (10 

frozen layer) that faster compare among different YOLOv5 models (YOLOv5m, YOLOv5l, 

YOLOv5x). Furthermore, Huang et al. proposed a lightweight transfer learning model with 

pruned and distilled YOLOv5s to identify arc magnet surface defects. The network 

pruning and knowledge distillation were combined to compress the transferred model. To 

weaken the loss of the accuracy after model compression, a new λ factor was introduced 

into the confidence loss function of the student model to increase the sensitivity of 

identifying the defects [6]. Experimental result shows that model’s performance is higher 

than other regular lightweight models where it could achieve 1.921 MB, and the average 

inference time was 9.46 ms. 

 

In other hand, Deep learning models with transfer learning have been applied in 

various fields, such as computer vision and natural language processing [2]. However, 

Neupane et al. mentioned that there is a greater challenge in training a Deep Learning 

(DL) model on a custom dataset. DL-based methods have the advantage of accurate 

detection and classification, but only if the training and test datasets are from the same or 

similar environment [12]. But, in reality it is quite challenging to gather big dataset only in 

one environment, moreover the model is possibly cannot be implemented in another 

case. This problem is often called the domain-shift problem [11] where Deep learning 

perform under the assumption that the training and test datasets are generated within 

comparable or identical environments. To minimize this problem, Neupane et al. used the 

method of transfer learning-based fine-tuning where they successfully improved the 

accuracy after fine-tuning (71% vs. up to 30%). In this research, we will try to compare 

the performance of original YOLOv5s model with the YOLOv5s with freezing layers 

method (10 and 24 frozen layers) when applied on imbalance dataset. 

 

 

3. Proposed Method 

3.1 YOLOv5 Architecture 

  

 The original architecture of YOLOv5 primarily of four components: Input, 

Backbone, Neck, and Head [10] that consist several correspond layers. Input is the 

components that used to input the data and normalize the image size to 640 x 640. Then 

it would choose the 4 random image and process it (cropping, scaling, and layout 

processing) using mosaic data [10] before it continues to the next processing component. 

In backbone, there are 10 total layers and 3 parts (CBS, C3 and SPPF) convolutional 

layers that responsible for learning process. The C3 module is based on the CSPNet [13] 

concept and includes three standard convolutional layers as well as multiple bottleneck 

modules. The SPPF module employs serial maxpool to perform multiscale fusion in order 

to expand the receptive field’s feature map [10]. 

 



 

Meanwhile, neck will responsible for fusing the backbone features and improving their 

representational power using Feature Pyramid Network (FPN) and Pixel Aggregation 

Network (PAN) structures. The FPN structure conveys semantic information from top to 

bottom through an upsampling operation, whereas the PAN structure transmits location 

information from bottom to top via a downsampling operation. Furthermore, head 

correspond for predicting the bounding boxes and class probabilities for each object 

within the input image. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 YOLOv5 Structure by Arifando et al 

 

In Fig.1 we can see the connection of each component and its layers. The learning 

process will divide into three different sizes of image, started from the second C3 in 

backbone that directly concated with C3 layers in neck components. This is because in 

YOLOv5 architecture, originally the algorithm will divide the image into 3 different sizes 

(as we can see in the head output) to predict the object. In this research, we choose 

YOLOv5s among the other version since it is widely used for deployment and real-time 



 

inference because of its sized and capability.  

 

 

3.2 Transfer Learning 

 

Dealing with challenging datasets often caused problems, such as overfitting, noise, 

outliers and sampling bias. Transfer learning is a machine learning technique where a 

model trained on one task is adapted to perform a second related task. With this method, 

we can transfer knowledge from previous tasks to new ones with relatively little training 

data, rather than learning new tasks from scratch through a large number of data [6] such 

as COCO or ImageNet and allows us to utilize a limited amount of training data without 

experiencing a decline in performance. 

 

 

 

 

 

 

 

 

 

 
 

Fig.2 Transfer Learning  

 

In this research, we will try to implement transfer learning method that using pre-trained 

YOLOv5s where the model already trained on the COCO dataset, which contains 80 

classes and more than 200,000 labeled images. The transfer learning technique will 

apply through freezing 10 and 24 layers. Furthermore, 10 layers refers to the freezing the 

backbone architecture that will keep the weight from the pretrained data and still update 

the rest of layer’s weight. However, if we freeze the whole layers (24 layers) the model is 

supposed to work better since we keep all of its weight from the pre-trained data. 

 

3.3 Performance Analysis 

 

In this paper, we adopt mean average precision (mAP) [14] as a performance metric. 

For each detected class, a precision-recall curve is generated, where recall (r) is defined 

as the ratio of all positive samples to all samples in that particular class. While precision 

(p) is a measure of the ratio of correctly identified positive samples to the total number of 

positive samples in the dataset: 

 

𝑟 =  
𝑡𝑝

𝑡𝑝+𝑓𝑛
,  𝑝 =  

𝑡𝑝

𝑡𝑝+𝑓𝑝
,   (1) 

 

where tp, fn, and fp represent true positive, false negative, and false positive, 

respectively. 

 

The Average Precision (AP) calculates curves from precision to recall by sampling the 

curve at all unique recall values or for every true positive. AP can be defined as follows, 

where M is the number of expected samples: 

 

𝐴𝑃 =  
1

𝑀
 ∑ 𝑝(𝑟)𝑟     (2) 



 

 

where r is the set of numbers obtained through the formula: 

 

𝑟 = {
𝑘

𝑀
| 0 ≤ 𝑘 ≤ 𝑀, 𝑘 ∈ 𝑁0}  (3) 

 

The mAP is the mean value of AP for each class. It can be defined as follows, where N is 

the number of classes: 

 

𝑚𝐴𝑃 =  
∑ 𝐴𝑃(𝑖)𝑁

𝑖=1

𝑁
    (4) 

 

By integrating these parameters into our evaluation framework, we will systematically 

assess the results to gain a comprehensive understanding of the model's performance. 

The utilization of mean average precision (mAP) as a primary performance metric, along 

with the examination of precision-recall curves for each identified class, enables a 

comprehensive measurement of the model's precision across different aspects of the 

classification assignment. 

 

4. Experimental Setup 

4.1 Data Collection 

 

An imbalanced dataset in machine learning occurs when the distribution of classes 

within the dataset is unequal. Specifically, one class (the minority class) has notably 

fewer instances than another class (the majority class). This imbalance presents 

challenges for machine learning algorithms, particularly when the objective is to train a 

model for accurate prediction or classification of instances from the minority class. 

 

 

 

 

 

 

 

 

 

 
 

Fig.3 Data Distribution 

 

In this research, the vehicle dataset was collected in West Jakarta, Indonesia using 

iPhone 11 camera where we divided the object into three classes (truck, car, and 

Motorcycle). Furthermore, to gather imbalance data, we only took 3% of dataset for truck 

class. This method will make sure the data tend to be biased towards the majority class. 

However, since we want to analyze the transfer learning model, we are expected the 

problem that may cause can be solve with the proposed model. 

 

4.2 Model Implementation 



 

 

In our proposed analysis, we aimed to conduct object detection using an imbalanced 

dataset. The initial model was trained without freezing any layers, allowing it to learn 

weights from the respective datasets over 100 epochs with a batch size of 16. Despite 

the dataset's small size and imbalance, the YOLOv5s pretrained model, unfrozen layers, 

demonstrated impressive results with a precision of 0.779, recall of 0.933, and an 

mAP@50 score of 0.93. Nevertheless, it's important to highlight that the mAP@50-95 

metric presented a lower value of 0.684, signaling opportunities for enhancement to 

encompass a more diverse array of object detection scenarios. 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 YOLOv5s Backbone and Head algorithm 

 

Additionally, we experimented with freezing all layers of the YOLOv5 model, 

incorporating the entire convolutional model with pretrained weights. In this approach, we 

retained the model's architecture and weights, solely adapting the detection class to align 

with the characteristics of the dataset in use. However, it is noteworthy that the YOLOv5s 

pretrained model did not perform optimally when all layers were frozen. The results 

indicated a precision of 0.549, recall of 0.881, mAP@50 of 0.749, and mAP@50-95 of 

0.556, suggesting limitations in achieving optimal performance under these conditions. 

 
Table.1 Model evaluation result 

 

Model Precission Recall mAP@50 mAP@50-95 

YOLOv5s (0 FL) 0.779 0.933 0.93 0.684 

YOLOv5s (10 FL) 0.639 0.939 0.951 0.732 

YOLOv5s (24 FL) 0.549 0.881 0.749 0.556 
 

 

 On the other hand, we conducted an evaluation using the pretrained YOLOv5s model 

with 10 frozen layers (FL) on the same dataset. The complete freezing of the backbone in 

the architecture ensures that the model's weights in this section continue to rely on the 

pretrained data from YOLOv5s. Remarkably, the recall, mAP@50, and mAP@50-95 

metrics demonstrated superior performance in comparison to other models (0 FL and 24 

FL), attaining consecutive values of 0.939, 0.951, and 0.732. However, it's crucial to 

emphasize that the precision result, while commendable, still fell short of the performance 

achieved by the 0 FL model, registering at 0.639. 

 

5. Result and Analysis 

The assessment of YOLOv5s on an imbalanced dataset yielded notable outcomes. 



 

Training the model without freezing any layers resulted in exceptional overall 

performance, indicated by a precision of 0.779, recall of 0.933, and mAP@50 of 0.93. 

However, the mAP@50-95 metric displayed a relatively lower value of 0.684, suggesting 

potential areas for improvement in addressing a wider array of object detection scenarios. 

On the other hand, freezing all layers of the YOLOv5s pretrained model yielded less 

favorable results, with a precision of 0.549, recall of 0.881, mAP@50 of 0.749, and 

mAP@50-95 of 0.556. Unexpectedly, performance significantly improved when 10 layers 

were frozen, achieving the highest recall, mAP@50, and mAP@50-95 values among the 

evaluated models at 0.939, 0.951, and 0.732, respectively. However, it's important to note 

that the precision result remained below that of the model with no frozen layers, recording 

at 0.639. 

 

 The study's results emphasize the complex impact of using frozen layers on how well 

YOLOv5s performs with imbalanced datasets. In result, we need to understand and 

manage trade-offs, especially in terms of precision and important metrics. The choice to 

freeze specific layers brings in a mix of factors that affect how effective the model is 

overall. By pointing out these detailed dynamics, the research highlights the careful 

balance needed when optimizing YOLOv5s for scenarios with imbalanced datasets. 

These insights are helpful for both practitioners and researchers, providing a better 

understanding of the consequences and considerations when using frozen layers to 

enhance object detection in challenging dataset conditions. 

 

6. Conclusion 

In conclusion, our study provides valuable insights into the impact of frozen layers on 
the performance of YOLOv5s in the context of handling imbalanced datasets. The results 
highlight a nuanced interplay of factors, particularly emphasizing trade-offs between 
precision and essential metrics. Notably, the unexpected improvement in performance 
observed when 10 layers were frozen suggests a potential avenue for enhancing the 
model's adaptability to imbalanced dataset scenarios. Our findings contribute to the 
existing body of knowledge by shedding light on the delicate balance required for 
optimizing YOLOv5s under these conditions. While our observations confirm the 
importance of careful consideration when using frozen layers, future work could delve into 
further understanding the specific mechanisms that lead to the observed improvements.  

 
Furthermore, investigating the transferability of our results to varied datasets and 

domains has the potential to offer a more comprehensive understanding of the 
effectiveness of frozen layers in improving object detection performance. This research 
establishes a foundation for future studies to expand upon, underscoring the continuous 
advancement and fine-tuning of methodologies within the realms of computer vision and 
object detection. 
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